login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274561
Numbers k such that sigma(k) == 0 (mod k+8).
2
10, 49, 240, 550, 748, 1504, 3192, 7192, 7912, 10792, 17272, 30592, 979992, 1713592, 4526272, 8353792, 9928792, 11547352, 17999992, 89283592, 173482552, 361702144, 1081850752, 1845991216, 2146926592, 11097907192, 12985220152, 21818579968, 34357510144, 109170719992, 228354264064, 279632332792, 549746900992, 1511712719992, 2169800814592
OFFSET
1,1
EXAMPLE
sigma(10) mod (10 + 8) = 18 mod 18 = 0.
MAPLE
with(numtheory); P:=proc(q, h) local n; for n from 1 to q do
if n+h>0 then if type(sigma(n)/(n+h), integer) then print(n); fi; fi; od; end: P(10^9, 8);
MATHEMATICA
Select[Range[10^6], Mod[DivisorSigma[1, #], # + 8] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jul 05 2016
EXTENSIONS
a(16)-a(35) from Giovanni Resta
STATUS
approved