login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274382
a(n) = gcd(n, n*(n+1)/2 - sigma(n)).
2
1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 6, 1, 4, 1, 1, 1, 24, 1, 1, 1, 14, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 10, 1, 3, 1, 2, 3, 1, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 14, 1, 1
OFFSET
1,2
LINKS
FORMULA
a(n) = gcd(n, A000217(n)-A000203(n)). - Felix Fröhlich, Jun 23 2016
a(n) = gcd(n, antisigma(n)) = gcd(n, A024816(n)). - Omar E. Pol, Jun 29 2016
EXAMPLE
a(6) = 3 because 6*7/2 - sigma(6) = 21 - 12 = 9 and gcd(6,9) = 3.
MAPLE
with(numtheory); P:=proc(q) local n;
for n from 1 to q do print(gcd(n, n*(n+1)/2-sigma(n))); od; end: P(10^3);
MATHEMATICA
Table[GCD[n, n (n+1)/2 - DivisorSigma[1, n]], {n, 100}] (* Vincenzo Librandi, Jun 25 2016 *)
PROG
(PARI) a(n) = gcd(n, n*(n+1)/2-sigma(n)) \\ Felix Fröhlich, Jun 23 2016
(Magma) [GCD(n, n*(n+1) div 2-SumOfDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Jun 25 2016
CROSSREFS
Sequence in context: A175432 A204118 A095025 * A318997 A355662 A069897
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jun 23 2016
STATUS
approved