login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest k > 0 such that F_{p-(k/p)} == 0 (mod p), where p = prime(n), F_i = A000045(i) and (a/b) is the Kronecker symbol.
0

%I #32 Jun 26 2016 13:23:59

%S 3,2,5,3,1,2,3,1,5,1,1,2,1,2,5,2,1,1,2,1,5,1,2,1,5,1,3,2,1,3,3,1,3,1,

%T 1,1,2,2,5,2,1,1,1,5,2,1,1,3,2,1,3,1,1,1,3,5,1,1,2,1,2,2,2,1,5,2,1,5,

%U 2,1,3,1,3,2,1,5,1,2,1,1,1,1,1,5,1,2,1

%N Smallest k > 0 such that F_{p-(k/p)} == 0 (mod p), where p = prime(n), F_i = A000045(i) and (a/b) is the Kronecker symbol.

%C a(n) <= 5 for all n (cf. Sun, Sun, 1992, p. 372).

%H Z. H. Sun and Z. W. Sun, <a href="http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-aav60i4p371bwm">Fibonacci numbers and Fermat's last theorem</a>, Acta Arithmetica, Vol. 60, No. 4 (1992), 371-388.

%e Prime(9) = 23 and Kronecker symbol (5/23) = -1. 23-(-1) = 24 and A000045(24) == 0 (mod 23). Since 5 is the smallest k such that A000045(23-(k/23)) == 0 (mod 23), a(9) = 5.

%t Table[Function[p, k = 1; While[! Divisible[Fibonacci[p - KroneckerSymbol[k, p]], p], k++]; k]@ Prime@ n, {n, 120}] (* _Michael De Vlieger_, Jun 23 2016 *)

%o (PARI) a(n) = my(k=1, p=prime(n)); while(Mod(fibonacci(p-kronecker(k, p)), p)!=0, k++); k

%Y Cf. A000045.

%K nonn

%O 1,1

%A _Felix Fröhlich_, Jun 21 2016