login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274164
Smallest k > 0 such that F_{p-(k/p)} == 0 (mod p), where p = prime(n), F_i = A000045(i) and (a/b) is the Kronecker symbol.
0
3, 2, 5, 3, 1, 2, 3, 1, 5, 1, 1, 2, 1, 2, 5, 2, 1, 1, 2, 1, 5, 1, 2, 1, 5, 1, 3, 2, 1, 3, 3, 1, 3, 1, 1, 1, 2, 2, 5, 2, 1, 1, 1, 5, 2, 1, 1, 3, 2, 1, 3, 1, 1, 1, 3, 5, 1, 1, 2, 1, 2, 2, 2, 1, 5, 2, 1, 5, 2, 1, 3, 1, 3, 2, 1, 5, 1, 2, 1, 1, 1, 1, 1, 5, 1, 2, 1
OFFSET
1,1
COMMENTS
a(n) <= 5 for all n (cf. Sun, Sun, 1992, p. 372).
LINKS
Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arithmetica, Vol. 60, No. 4 (1992), 371-388.
EXAMPLE
Prime(9) = 23 and Kronecker symbol (5/23) = -1. 23-(-1) = 24 and A000045(24) == 0 (mod 23). Since 5 is the smallest k such that A000045(23-(k/23)) == 0 (mod 23), a(9) = 5.
MATHEMATICA
Table[Function[p, k = 1; While[! Divisible[Fibonacci[p - KroneckerSymbol[k, p]], p], k++]; k]@ Prime@ n, {n, 120}] (* Michael De Vlieger, Jun 23 2016 *)
PROG
(PARI) a(n) = my(k=1, p=prime(n)); while(Mod(fibonacci(p-kronecker(k, p)), p)!=0, k++); k
CROSSREFS
Cf. A000045.
Sequence in context: A230820 A324549 A152178 * A103340 A106615 A361317
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jun 21 2016
STATUS
approved