OFFSET
1,1
COMMENTS
As 0 < k < p, k mod p = k, so Sum_{k = primes<p} (k mod p) = A007504(A000720(A151799(p))) for p > 3. - David A. Corneth, Jun 07 2016
LINKS
Robert Israel, Table of n, a(n) for n = 1..1003
EXAMPLE
2 mod 5 = 2, 3 mod 5 = 3 and 2 + 3 = 5 is prime;
5 mod 2 = 1, 5 mod 3 = 2 and 1 + 2 = 3 is prime.
MAPLE
with(numtheory): P:=proc(q) local a, b, j, k, n; for j from 1 to q do n:=ithprime(j); a:=0; b:=0; for k from 1 to n-1 do
if isprime(k) then a:=a+k; b:=b+(n mod k); fi; od;
if isprime(a) and isprime(b) then print(n); fi; od; end: P(10^6);
# Alternative:
N:= 10^6: # to get all entries <= N
Primes:= select(isprime, [2, seq(i, i=3..N, 2)]):
PS:= ListTools:-PartialSums(Primes):
count:= 0:
for i from 2 to nops(Primes) do
n := Primes[i];
if isprime(PS[i-1]) and isprime(add(n mod Primes[j], j=1..i-1)) then
count:= count+1;
A[count]:= n;
fi
od:
seq(A[i], i=1..count); # Robert Israel, Jun 07 2016
PROG
(PARI) is(n) = {if(isprime(n), my(nk, kn, u=prime(primepi(n-1)));
forprime(k=2, u, kn+=k; nk+=n%k); isprime(kn)&&isprime(nk), 0)} \\ David A. Corneth, Jun 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jun 07 2016
STATUS
approved