|
|
A274020
|
|
Number of n-bead 5-ary necklaces (no turning over allowed) that avoid the subsequence 110.
|
|
3
|
|
|
1, 5, 15, 44, 160, 604, 2510, 10545, 45825, 201669, 900307, 4057625, 18447565, 84444000, 388878560, 1799985435, 8368841895, 39062428790, 182961584260, 859612223990, 4049955449888, 19128675877279, 90553562670495, 429560546547595, 2041573370075675, 9719864998575489, 46350124359578975, 221352533355568044
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The pattern in this enumeration must be contiguous (all three values next to each other in one sequence of three letters).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 1 - Sum_{n>=1} (phi(n)/n)*log(x^(3*n)-q*x^n+1), where q=5 is the number of symbols in the alphabet we are using. - Petros Hadjicostas, Sep 12 2017
Define sequence (c(n): n>=1) by c(1) = q, c(2) = q^2, c(3) = q^3-3, and c(n) = q*c(n-1) - c(n-3) for n>=4. Then a(n) = (1/n)*Sum_{d|n} phi(n/d)*c(d) for n>=1. (Here q=5.) - Petros Hadjicostas, Jan 29 2018
|
|
EXAMPLE
|
The following necklace:
. 1-1
. / \
. 0 0
. | |
. 1 3
. \ /
. 2-4
contains one instance of the subsequence starting in the upper left corner. Unlike a bracelet, the necklace is oriented.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|