OFFSET
1,1
COMMENTS
For k > 9, numbers k such that k-10 occurrences of the digit 9 followed by the digits 8999999999 is prime (see Example section).
a(35) > 2*10^5.
LINKS
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 9w8999999999.
EXAMPLE
11 is in this sequence because 10^11 - 1000000001 = 98999999999 is prime.
Initial terms and associated primes:
a(1) = 11, 98999999999,
a(2) = 18, 999999998999999999,
a(3) = 22, 9999999999998999999999,
a(4) = 26, 99999999999999998999999999,
a(5) = 27, 999999999999999998999999999, etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[10^#-1000000001] &]
PROG
(PARI) is(n)=ispseudoprime(10^n-10^9-1) \\ Charles R Greathouse IV, Jun 08 2016
(Python)
from sympy import isprime
def afind(limit):
tenk = 10**10
for k in range(10, limit+1):
if isprime(tenk - 1000000001): print(k, end=", ")
tenk *= 10
afind(100000) # Michael S. Branicky, Nov 18 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert Price, May 27 2016
EXTENSIONS
a(32)-a(33) from Robert Price, Mar 01 2018
a(34) from Robert Price, Dec 31 2020
STATUS
approved