OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Donal F. Connon, Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. Volume II(b), arXiv:0710.4024 [math.HO] 2007. page 130.
FORMULA
Equals (1/6)*(1-EulerGamma)*Pi^2+zeta'(2).
Also equals (1/6)*Pi^2*(1+log(2*Pi)-12*log(G)), where G is the Glaisher-Kinkelin constant.
EXAMPLE
-0.242095898582598841775723030153544722318916336881701342613272218...
MATHEMATICA
RealDigits[(1/6) Pi^2 (1 + Log[2Pi] - 12 Log[Glaisher]), 10, 101][[1]]
PROG
(PARI) default(realprecision, 100); (1/6)*(1-Euler)*Pi^2 + zeta'(2) \\ G. C. Greubel, Sep 07 2018
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, May 18 2016
STATUS
approved