



0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 68, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

When written in base 2 as a right justified table, columns have periods 1, 2, 4, 8, ...  Philippe Deléham, Apr 21 2005


LINKS

Table of n, a(n) for n=0..94.
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.


FORMULA

a(n) = Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k.


EXAMPLE

Has a natural decomposition into blocks: 0; 2; 4, 2, 0; 10, 4, 2, 0, 2, 4, 2; 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4; 34, 16, 10, 4, ... where the leading term in each block is given by A105024.


MAPLE

s:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n+l, 2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc;


CROSSREFS

Cf. A102370, A103185, A105024.
Sequence in context: A094239 A273240 A201316 * A279315 A303293 A201558
Adjacent sequences: A105020 A105021 A105022 * A105024 A105025 A105026


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Apr 03 2005


STATUS

approved



