Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jul 26 2024 21:16:41
%S 1,5,29,149,669,2837,11709,47669,192669,775637,3115389,12495989,
%T 50079069,200585237,803115069,3214717109
%N Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 555", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%C Conjecture: Rule 571 also generates this sequence. - _Lars Blomberg_, Jul 10 2016
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjecture: a(n) = 3*4^n - 4*3^(n-2) - 4*2^n + 1, n>1. - _Lars Blomberg_, Jul 10 2016
%F Conjectures from _Colin Barker_, Dec 01 2016: (Start)
%F a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n>5.
%F G.f.: (1 - 5*x + 14*x^2 - 16*x^3 - 32*x^4 + 32*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
%F (End)
%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
%t code=555; stages=128;
%t rule=IntegerDigits[code,2,10];
%t g=2*stages+1; (* Maximum size of grid *)
%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
%t ca=a;
%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
%t PrependTo[ca,a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k=(Length[ca[[1]]]+1)/2;
%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
%t Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)
%Y Cf. A272920.
%K nonn,more
%O 0,2
%A _Robert Price_, May 10 2016
%E a(8)-a(15) from _Lars Blomberg_, Jul 10 2016