login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272921
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 555", based on the 5-celled von Neumann neighborhood.
0
1, 5, 29, 149, 669, 2837, 11709, 47669, 192669, 775637, 3115389, 12495989, 50079069, 200585237, 803115069, 3214717109
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Conjecture: Rule 571 also generates this sequence. - Lars Blomberg, Jul 10 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = 3*4^n - 4*3^(n-2) - 4*2^n + 1, n>1. - Lars Blomberg, Jul 10 2016
Conjectures from Colin Barker, Dec 01 2016: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n>5.
G.f.: (1 - 5*x + 14*x^2 - 16*x^3 - 32*x^4 + 32*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=555; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A272920.
Sequence in context: A339957 A027864 A272839 * A198764 A065541 A060926
KEYWORD
nonn,more
AUTHOR
Robert Price, May 10 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 10 2016
STATUS
approved