login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272868
Triangle read by rows, T(n,k) = 2^k*GegenbauerC(k,-n,-1/4), for n>=0 and 0<=k<=n.
0
1, 1, 1, 1, 2, 9, 1, 3, 15, 25, 1, 4, 22, 52, 145, 1, 5, 30, 90, 285, 561, 1, 6, 39, 140, 495, 1206, 2841, 1, 7, 49, 203, 791, 2261, 6027, 12489, 1, 8, 60, 280, 1190, 3864, 11452, 27560, 60705, 1, 9, 72, 372, 1710, 6174, 20076, 54468, 134073, 281185
OFFSET
0,5
FORMULA
T(n,n) = A084605(n).
T(n,n-1) = A098520(n).
T(n+1,n)/(n+1) = A091147(n).
EXAMPLE
Triangle starts:
1;
1, 1;
1, 2, 9;
1, 3, 15, 25;
1, 4, 22, 52, 145;
1, 5, 30, 90, 285, 561;
1, 6, 39, 140, 495, 1206, 2841;
1, 7, 49, 203, 791, 2261, 6027, 12489;
MAPLE
T := (n, k) -> simplify(2^k*GegenbauerC(k, -n, -1/4)):
for n from 0 to 9 do seq(T(n, k), k=0..n) od;
MATHEMATICA
Table[If[n == 0, 1, 2^k GegenbauerC[k, -n, -1/4]], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 08 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 08 2016
STATUS
approved