%I #22 Jul 26 2024 21:16:40
%S 1,8,44,204,876,3652,14972,60588,243604,976380,3907732,15630108,
%T 62502964,249929340,999409492,3996593628
%N Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 493", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%C Before this sequence a(6) = 14972 was an uninteresting number or "boring number" (see the Numberphile video). - _Omar E. Pol_, Jul 11 2021
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Tony Padilla and Brady Haran, <a href="https://www.youtube.com/watch?v=VDYzSzDaHuM">Can a number be boring? (feat 14972)</a>, Numberphile video (2014)
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjecture: a(n) = (2142*4^(n-3) + 196*3^(n-4) - 531*2^(n-3) + 144)/9, n>5. - _Lars Blomberg_, Jul 07 2016
%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
%t code=493; stages=128;
%t rule=IntegerDigits[code,2,10];
%t g=2*stages+1; (* Maximum size of grid *)
%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
%t ca=a;
%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
%t PrependTo[ca,a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k=(Length[ca[[1]]]+1)/2;
%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
%t Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)
%Y Cf. A272543.
%K nonn,more
%O 0,2
%A _Robert Price_, May 02 2016
%E a(8)-a(15) from _Lars Blomberg_, Jul 07 2016