login
A272544
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 493", based on the 5-celled von Neumann neighborhood.
0
1, 8, 44, 204, 876, 3652, 14972, 60588, 243604, 976380, 3907732, 15630108, 62502964, 249929340, 999409492, 3996593628
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Before this sequence a(6) = 14972 was an uninteresting number or "boring number" (see the Numberphile video). - Omar E. Pol, Jul 11 2021
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = (2142*4^(n-3) + 196*3^(n-4) - 531*2^(n-3) + 144)/9, n>5. - Lars Blomberg, Jul 07 2016
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=493; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A272543.
Sequence in context: A241395 A271690 A272417 * A272292 A270627 A273639
KEYWORD
nonn,more
AUTHOR
Robert Price, May 02 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 07 2016
STATUS
approved