

A272440


Numbers n such that the average of the positive divisors of n is a Fibonacci number.


1



1, 3, 5, 6, 21, 41, 45, 65, 67, 68, 78, 96, 109, 382, 497, 517, 527, 658, 682, 705, 759, 805, 930, 966, 1155, 1557, 1973, 3211, 3653, 4563, 5167, 5620, 9037, 10027, 10117, 13279, 17353, 28856, 35174, 35534, 45459, 56072, 154555, 175151, 177721, 181561, 183181, 184201, 184421, 184601, 185466, 226666
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

1, 3, 5 and 21 are Fibonacci numbers. Are there other Fibonacci numbers in this sequence?
For a similar question and related proof attempt see the paper in the links section of A272412.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..734


EXAMPLE

3 is a term because 3 is divisible by 1 and 3. Average of 3 and 1 is 2 that is a Fibonacci number.


MATHEMATICA

s = Array[Fibonacci, {28}]; Select[Range@ Max@ s, MemberQ[s, Mean@ Divisors@ #] &] (* Michael De Vlieger, Apr 29 2016 *)


PROG

(PARI) isFibonacci(n)=my(k=n^2); k+=((k + 1) << 2); issquare(k)  (n > 0 && issquare(k8))
is(n)=my(f=factor(n), s=sigma(f), d=numdiv(f)); s%d==0 && isFibonacci(s/d) \\ Charles R Greathouse IV, May 02 2016


CROSSREFS

Cf. A000045, A003601, A272412.
Sequence in context: A282809 A168156 A295403 * A276704 A103022 A086189
Adjacent sequences: A272437 A272438 A272439 * A272441 A272442 A272443


KEYWORD

nonn,easy


AUTHOR

Altug Alkan, Apr 29 2016


STATUS

approved



