login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n = concat(x,y) such that (x - phi(x)) + (y - phi(y)) = n - phi(n), where n - phi(n) is the Euler cototient function of n.
2

%I #9 Apr 29 2016 17:34:34

%S 13,17,31,71,103,107,113,131,137,167,173,179,191,197,311,431,701,971,

%T 1013,1019,1031,1061,1091,1097,1103,1109,1151,1163,1181,1193,1219,

%U 1223,1229,1277,1283,1301,1307,1339,1367,1373,1409,1433,1439,1487,1499,1511,1523

%N Numbers n = concat(x,y) such that (x - phi(x)) + (y - phi(y)) = n - phi(n), where n - phi(n) is the Euler cototient function of n.

%C Essentially primes. Only 58 squarefree composite in the first 10000 terms: 1219, 1339, 2869, 3743, 4427, 9707, 11569, 14269, 16105, 17125, 18733, 19375, 22927, 74069, 106159, 107629, 115069, 134959, 137533, 137843, 142417, 146207, 147943, 150421, 156857, 158899, 165625, 170033, 183595, 184375, 194627, 220417, 226417, 243293, 280873, 284371, 325067, 345827, 425261, 740821, 765403, 794837, 857257, 908647, 914231, 1005673, 1007509, 1037749, 1043527, 1188211, 1188919, 1296497, 1416019, 1428773, 1527167, 1528913, 1587227, 15906225.

%H Paolo P. Lava, <a href="/A272403/b272403.txt">Table of n, a(n) for n = 1..10000</a>

%e 137 - phi(137) = (1 - phi(1)) + (37 - phi(37)) = 1;

%e 1219 - phi(1219) = (1- phi(1)) + (219 - phi(219)) = 75;

%e 4427- phi(4427) = (442 - phi(442)) + (7- phi(7)) = 251.

%p with(numtheory): P:=proc(q) local x,y,k,n; for n from 1 to q do

%p for k from 1 to ilog10(n) do x:=n mod 10^k; y:=trunc(n/10^k);

%p if (x-phi(x))+(y-phi(y))=n-phi(n) then print(n); break; fi;

%p od; od; end: P(10^6);

%t Select[Range@ 1600, Function[m, AnyTrue[Map[FromDigits /@ TakeDrop[IntegerDigits@ m, #] &, Range[IntegerLength@ m - 1]], Total@ Map[# - EulerPhi@ # &, #] == m - EulerPhi@ m &]]] (* _Michael De Vlieger_, Apr 29 2016, Version 10.2 *)

%Y Cf. A000040, A051953, A272157.

%K nonn,base,easy

%O 1,1

%A _Paolo P. Lava_, Apr 29 2016