login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272403
Numbers n = concat(x,y) such that (x - phi(x)) + (y - phi(y)) = n - phi(n), where n - phi(n) is the Euler cototient function of n.
2
13, 17, 31, 71, 103, 107, 113, 131, 137, 167, 173, 179, 191, 197, 311, 431, 701, 971, 1013, 1019, 1031, 1061, 1091, 1097, 1103, 1109, 1151, 1163, 1181, 1193, 1219, 1223, 1229, 1277, 1283, 1301, 1307, 1339, 1367, 1373, 1409, 1433, 1439, 1487, 1499, 1511, 1523
OFFSET
1,1
COMMENTS
Essentially primes. Only 58 squarefree composite in the first 10000 terms: 1219, 1339, 2869, 3743, 4427, 9707, 11569, 14269, 16105, 17125, 18733, 19375, 22927, 74069, 106159, 107629, 115069, 134959, 137533, 137843, 142417, 146207, 147943, 150421, 156857, 158899, 165625, 170033, 183595, 184375, 194627, 220417, 226417, 243293, 280873, 284371, 325067, 345827, 425261, 740821, 765403, 794837, 857257, 908647, 914231, 1005673, 1007509, 1037749, 1043527, 1188211, 1188919, 1296497, 1416019, 1428773, 1527167, 1528913, 1587227, 15906225.
LINKS
EXAMPLE
137 - phi(137) = (1 - phi(1)) + (37 - phi(37)) = 1;
1219 - phi(1219) = (1- phi(1)) + (219 - phi(219)) = 75;
4427- phi(4427) = (442 - phi(442)) + (7- phi(7)) = 251.
MAPLE
with(numtheory): P:=proc(q) local x, y, k, n; for n from 1 to q do
for k from 1 to ilog10(n) do x:=n mod 10^k; y:=trunc(n/10^k);
if (x-phi(x))+(y-phi(y))=n-phi(n) then print(n); break; fi;
od; od; end: P(10^6);
MATHEMATICA
Select[Range@ 1600, Function[m, AnyTrue[Map[FromDigits /@ TakeDrop[IntegerDigits@ m, #] &, Range[IntegerLength@ m - 1]], Total@ Map[# - EulerPhi@ # &, #] == m - EulerPhi@ m &]]] (* Michael De Vlieger, Apr 29 2016, Version 10.2 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Apr 29 2016
STATUS
approved