login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271941
Number of peaks in all bargraphs having semiperimeter n (n>=2).
4
1, 2, 5, 13, 36, 105, 317, 979, 3070, 9731, 31090, 99940, 322832, 1047007, 3407017, 11118165, 36370984, 119234791, 391620238, 1288394790, 4244993865, 14005026856, 46260856498, 152974164616, 506355410344, 1677603452621, 5562725698010, 18459595624048, 61301038293810, 203705244194997
OFFSET
2,2
LINKS
A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
FORMULA
a(n) = Sum_{k>=1} k*A271940(n,k).
G.f.: z^2*((1+z^2)*sqrt(1-4z+2z^2+z^4)+1-4z+2z^2+z^4)/(2(1-3z-z^2-z^3)(1-z)^2).
(1-n)*a(n)-a(n+1)+(-4-3*n)*a(n+2)+(-2+4*n)*a(n+3)+(-9-3*n)*a(4+n)+(15+4*n)*a(n+5)+(-4-n)*a(n+6)+2 = 0. - Robert Israel, May 20 2016
EXAMPLE
a(4)=5 because each of the 5 (=A082582(4)) bargraphs of semiperimeter 4 (corresponding to the compositions [1,1,1],[1,2],[2,1],[2,2],[3]) has only 1 peak.
a(6)=36 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only the one corresponding to the composition [2,1,2] has 2 peaks; 34*1 + 1* 2 = 36.
MAPLE
g := (1/2)*z^2*((1+z^2)*sqrt(1-4*z+2*z^2+z^4)+1-4*z+2*z^2+z^4)/((1-z)^2*(1-3*z-z^2-z^3)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 2 .. 35);
CROSSREFS
Partial sums of A271941.
Sequence in context: A154836 A087626 A125094 * A114465 A135310 A135337
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 20 2016
STATUS
approved