login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271899
a(n) = 1 + 471*n/140 + 1594*n^2/315 + 73*n^3/16 + 161*n^4/60 + 83*n^5/80 + 61*n^6/240 + n^7/28 + 11*n^8/5040.
1
1, 18, 162, 927, 3906, 13248, 38256, 97614, 225819, 482482, 965250, 1827189, 3299556, 5720976, 9574128, 15531132, 24508917, 37735938, 56831698, 83900619, 121641894, 173477040, 243696960, 337630410, 461835855, 624318786, 834776658, 1104873697, 1448547912, 1882352736, 2425835808
OFFSET
0,2
COMMENTS
Values of Ehrhart polynomial for a facet of the Birkhoff polytope B_4.
LINKS
Jesús A. De Loera, Fu Liu, and Ruriko Yoshida, A generating function for all semi-magic squares and the volume of the Birkhoff polytope, J. Algebraic Combin. 30 (2009), no. 1, 113-139.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = (n+4)*(n+3)*(n+2)*(n+1)*(11*n^4+70*n^3+196*n^2+269*n+210)/5040.
G.f.: (1 + 9*x + 36*x^2 + 33*x^3 + 9*x^4)/(1 - x)^9. - Ilya Gutkovskiy, Apr 16 2016
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Wesley Ivan Hurt, Jul 02 2020
MAPLE
f:=n-> 1 + 471*n/140 + 1594*n^2/315 + 73*n^3/16 + 161*n^4/60 + 83*n^5/80 + 61*n^6/240 + n^7/28 + 11*n^8/5040;
[seq(f(n), n=0..30)];
MATHEMATICA
CoefficientList[Series[(1 + 9 x + 36 x^2 + 33 x^3 + 9 x^4)/(1 - x)^9, {x, 0, 30}], x] (* Michael De Vlieger, Apr 16 2016 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 18, 162, 927, 3906, 13248, 38256, 97614, 225819}, 40] (* Harvey P. Dale, Oct 06 2023 *)
PROG
(Python)
A271899_list, m = [], [88, -128, 61, -8]+[1]*5
for _ in range(100):
A271899_list.append(m[-1])
for i in range(8):
m[i+1] += m[i] # Chai Wah Wu, Apr 16 2016
(PARI) lista(nn) = for(n=0, nn, print1((1/5040)*(n+4)*(n+3)*(n+2)*(n+1)*(11*n^4+70*n^3+196*n^2+269*n+210), ", ")); \\ Altug Alkan, Apr 16 2016
CROSSREFS
Sequence in context: A222914 A171642 A158808 * A128797 A008418 A099196
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 16 2016
STATUS
approved