login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Erroneous version of A271811 (but for odd primes only).
2

%I #33 Apr 15 2016 13:54:27

%S 491,668,844,1183,1474,1961,2293,2936,4190,4686,6244,7363,7999,9266,

%T 11456,13835,14766,17449,19348,20419,23578,25781,29375,34549,37228,

%U 38644,41471,43018,46001,57454,60913,66371,68263,77960,80016,86254,92689,97076,103946,111005,113496

%N Erroneous version of A271811 (but for odd primes only).

%C Previous name was "Number of non-abelian groups of order prime(n)^6".

%H Rodney James, <a href="http://dx.doi.org/10.1090/S0025-5718-1980-0559207-0">The groups of order p^6 (p an odd prime)</a>, Math. Comp. 34 (1980), 613-637.

%H M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, <a href="http://dx.doi.org/10.1016/j.jalgebra.2003.11.012">Groups and nilpotent Lie rings whose order is the sixth power of a prime</a>, J. Algebra, 278 (2004), 383-401.

%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>

%F a(n) = (13*p^2 + 145*p + 1338 + 80*gcd(p-1,3) + 45*gcd(p-1,4) + 8*gcd(p-1, 5) + 8*gcd(p-1,6))/4 for n>2 and where p = prime(n). See [Rodney James].

%o (PARI) a(n) = if (n==2, 491, my(p=prime(n)); (13*p^2 + 145*p + 1338 + 80*gcd(p-1, 3) + 45*gcd(p-1, 4) + 8*gcd(p-1, 5) + 8*gcd(p-1, 6))/4);

%Y Cf. A000001 (groups), A060689 (non-abelian groups),

%Y Cf. A232106, A271664.

%Y Cf. A030516 (primes^6)

%Y Cf. A271811.

%K nonn

%O 2,1

%A _Michel Marcus_, Apr 12 2016