login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271647
Irregular triangle read by rows: the natural numbers from right to left.
0
1, 2, 4, 3, 6, 5, 9, 8, 7, 12, 11, 10, 16, 15, 14, 13, 20, 19, 18, 17, 25, 24, 23, 22, 21, 30, 29, 28, 27, 26, 36, 35, 34, 33, 32, 31, 42, 41, 40, 39, 38, 37, 49, 48, 47, 46, 45, 44, 43, 56, 55, 54, 53, 52, 51, 50, 64, 63, 62, 61, 60, 59, 58, 57
OFFSET
1,2
COMMENTS
A permutation of the natural numbers. Mentioned as d(n) in A269837.
Difference table:
1, 2, 4, 3, 6, 5, 9, 8, 7, 12, 11, 10, 16, 15, 14, 13, 20, 19, 18, ...
1, 2, -1, 3, -1, 4, -1, -1, 5, -1, -1, 6, -1, -1, -1, 7, -1, -1, -1, ...
1, -3, 4, -4, 5, -5, 0, 6, -6, 0, 7, -7, 0, 0, 8, -8, 0, 0, 9, ...
etc.
FORMULA
With offset=0, a(n) = A271584(n) + A269837(n)
Empirical g.f. as triangle: (1-y*x^3+y^2*x^4-2*y*x^4-y^2*x^5+y*x^5+y^2*x^7)*x/((1+x)*(1-x)^3*(1-y*x^2)^3). - Robert Israel, Apr 11 2016
EXAMPLE
Irregular triangle:
1,
2,
4, 3,
6, 5,
9, 8, 7,
12, 11, 10,
16, 15, 14, 13,
20, 19, 18, 17,
25, 24, 23, 22, 21,
30, 29, 28, 27, 26,
etc.
MAPLE
count:= 0:
for r from 1 to 20 do
d:= ceil(r/2);
for i from 0 to d-1 do A[r, i]:= count+ d-i od;
count:= count+d;
od:
seq(seq(A[r, i], i=0..ceil(r/2)-1), r=1..20); # Robert Israel, Apr 11 2016
MATHEMATICA
Table[Reverse@ Range[Floor[n/2]] + Floor[(n - 1)^2/4], {n, 16}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)
KEYWORD
nonn,tabf
AUTHOR
Paul Curtz, Apr 11 2016
STATUS
approved