login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271569
Repdigit numbers n such that the repeated digit of n is equal to the digital root of n.
0
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 99, 999, 3333, 6666, 9999, 99999, 999999, 3333333, 6666666, 9999999, 99999999, 999999999, 1111111111, 2222222222, 3333333333, 4444444444, 5555555555, 6666666666, 7777777777, 8888888888, 9999999999, 99999999999, 999999999999, 3333333333333, 6666666666666, 9999999999999
OFFSET
1,3
COMMENTS
Sequence is trivially infinite.
If we regard m-digit repdigits that repeat digit k as rows of a number triangle T(m, k) and we ignore the term 0, then we would have k = (1, ..., 9) for m = 1 (mod 9), k = (3, 6, 9) for m = 4 or 7 (mod 9), and k = 9 for all other values of m (mod 9). Thus the row lengths L for increasing values of m starting with m = 1 are {9, 1, 1, 3, 1, 1, 3, 1, 1} repeated. - Michael De Vlieger, Jul 13 2016.
EXAMPLE
3333 is a term because 3 + 3 + 3 + 3 = 12, 1 + 2 = 3.
MATHEMATICA
Union@ Flatten@ Table[Map[Function[k, If[NestWhile[Total@ IntegerDigits@ # &, #, IntegerLength@ # > 1 &] == k, #, 0] &@ FromDigits@ Table[k, {n}]], Range@ 9], {n, 13}] (* Michael De Vlieger, Jul 13 2016 *)
CROSSREFS
Sequence in context: A378835 A281091 A378837 * A239138 A345964 A298425
KEYWORD
nonn,easy,base,less
AUTHOR
Altug Alkan, Jul 13 2016
STATUS
approved