Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #35 Dec 13 2024 11:24:31
%S 1,4,119,23496,32149806,300214157831,19246160432331107,
%T 8451529006578585976752,25443734373070679510011112460,
%U 524973397889459587964008354031908560,74243674067972394056586805754940632245000310,71965837912588688126721254257169744333502564695515911
%N a(n) = fibonorial(3*n)/(fibonorial(2*n+1)*fibonorial(n+1)), where fibonorial(n) = A003266(n).
%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.
%H Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/fibofact.txt">Fibonacci factorials</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonorial.html">Fibonorial</a>, <a href="http://mathworld.wolfram.com/FibonacciFactorialConstant.html">Fibonacci Factorial Constant</a>.
%F a(n) ~ 5*phi^(2*n^2 - 3*n - 2)/C where phi = (1+sqrt(5))/2, and C = (-1/phi^2; -1/phi^2)_inf is the Fibonacci factorial constant whose decimal expansion is given in A062073.
%t Table[Fibonorial[3 n]/(Fibonorial[2 n + 1] Fibonorial[n + 1]), {n, 1, 30}] (* The sequence itself *)
%t QPochhammer[-1/GoldenRatio^2] (* The Fibonacci factorial constant C in the asymptotic expansion *)
%Y Cf. A003266, A003267, A003268, A062073, A003150, A000045.
%K nonn,easy
%O 1,2
%A _Vladimir Reshetnikov_, May 21 2016