login
A271323
Numbers n such that n - 41, n - 1, n + 1, n + 41 are consecutive primes.
1
383220, 1269642, 1528938, 2590770, 3014700, 3158298, 3697362, 3946338, 4017312, 4045050, 4545642, 4711740, 4851618, 4871568, 5141178, 5194602, 5925042, 5972958, 5990820, 6075030, 6179862, 6212202, 6350760, 6442938, 6549312, 6910638, 6912132
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A014574 (average of twin prime pairs) and A256753.
The terms ending in 0 belong to A249674 (divisible by 30).
The terms ending in 2 (resp. 8) are congruent to 12 (resp. 18) mod 30.
The numbers n - 40 and n + 1 belong to A126721 (p such that p + 40 is the next prime) and A271981 (p and p + 40 are primes).
The numbers n - 40 and n - 1 belong to A271982 (p and p + 42 are primes).
LINKS
Eric Weisstein's World of Mathematics, Twin Primes
EXAMPLE
383220 is the average of the four consecutive primes 383179, 383219, 383221, 383261.
1269642 is the average of the four consecutive primes 1269601, 1269641, 1269643, 1269683.
MATHEMATICA
Mean/@Select[Partition[Prime[Range[472000]], 4, 1], Differences[#] == {40, 2, 40}&] (* Harvey P. Dale, Oct 16 2021 *)
PROG
(Python)
from sympy import isprime, prevprime, nextprime
for i in range(0, 12000001, 6):
if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-41 and nextprime(i+1) == i+41: print (i, end=', ')
CROSSREFS
Cf. A014574, A077800 (twin primes), A249674, A256753.
Sequence in context: A295454 A273772 A206365 * A205759 A205589 A157843
KEYWORD
nonn,changed
AUTHOR
Karl V. Keller, Jr., May 15 2016
STATUS
approved