login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270834
Numbers n such that A256832(n)/A000129(n-1) is not divisible by n.
2
3, 7, 9, 11, 19, 23, 31, 43, 47, 67, 71, 83, 107, 127, 131, 139, 151, 163, 167, 191, 211, 263, 271, 283, 307, 311, 331, 347, 359, 367, 383, 431, 439, 463, 467, 479, 491, 499, 503, 523, 547, 563, 571, 587, 619, 631, 647, 659, 691, 719, 727, 739, 743, 787, 811, 823, 839, 859, 863, 883, 887
OFFSET
1,1
COMMENTS
The computation of integers n such that A256832(n) is not divisible by n, leads to A213891. This sequence contains A213891 as a subsequence.
It appears that 9 is the only composite number in this sequence.
No composites below 10^7. - Charles R Greathouse IV, Apr 20 2016
No composites below 2*10^7. - Charles R Greathouse IV, May 06 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
7 is a term because 1*2*5*12*29*169 = 588120 is not divisible by 7.
MATHEMATICA
With[{s = Sqrt@ 2}, Select[Range[2, 90], ! Divisible[Product[Expand[((1 + s)^k - (1 - s)^k)/2 s], {k, #}]/Simplify[((1 + s)^(# - 1) - (1 - s)^(# -
1))/(2 s)], #] &]] (* Michael De Vlieger, Mar 24 2016, after Vaclav Kotesovec at A256832 and Michael Somos at A000129 *)
PROG
(PARI) a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
t(n) = Mod((prod(k=1, n, a000129(k)) / a000129(n-1)), n);
for(n=2, 1e3, if(lift(t(n)) != 0, print1(n, ", ")));
(PARI) is(n)=my(a, b=Mod(1, n), t=b); for(k=2, n-2, [a, b]=[b, a+2*b]; t*=b; if(t==0, return(0))); t*(2*a+5*b) && n>2 \\ Charles R Greathouse IV, Mar 24 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 23 2016
STATUS
approved