login
A270822
Expansion of 1/((1-4*x^2)^(3/2)-2*x*(1-4*x^2)).
0
1, 2, 10, 24, 86, 224, 708, 1920, 5734, 15872, 46124, 129024, 369916, 1040384, 2962760, 8355840, 23714950, 66977792, 189768220, 536346624, 1518330516, 4292870144, 12147349560, 34351349760, 97181500636, 274844352512, 777462405688
OFFSET
0,2
FORMULA
a(n) = (n+1)*2^n*Sum_{i=0..n/2}(binomial((n-1)/2,i)/(n-2*i+1)).
a(n) ~ 2^((3*n+1)/2). - Vaclav Kotesovec, Mar 23 2016
MATHEMATICA
CoefficientList[Series[1/((1 - 4 x^2)^(3/2) - 2 x (1 - 4 x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Mar 23 2016 *)
PROG
(Maxima)
a(n):=(n+1)*2^(n)*sum(binomial((n-1)/2, i)/(n-2*i+1), i, 0, n/2);
(PARI) x='x+O('x^200); Vec(1/((1-4*x^2)^(3/2)-2*x*(1-4*x^2))) \\ Altug Alkan, Mar 23 2016
CROSSREFS
Cf. A000984.
Sequence in context: A233266 A222848 A119062 * A248117 A345695 A336958
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 23 2016
STATUS
approved