login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*F(k+1)/(k+1)), where F(k) is Fibonacci numbers.
0

%I #16 May 10 2020 15:45:04

%S 1,3,5,10,20,42,91,195,415,880,1864,3952,8385,17795,37765,80138,

%T 170044,360810,765595,1624515,3447071,7314368,15520400,32932800,

%U 69880225,148279107,314634021,667623210,1416632420,3005958090,6378354619

%N a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*F(k+1)/(k+1)), where F(k) is Fibonacci numbers.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2, 0, 0, 0, 2, 1).

%F G.f.: (-x^2+x+1)/(-x^6-2*x^5-2*x+1).

%F a(n) = 2*a(n-1) + 2*a(n-5) + a(n-6). - _G. C. Greubel_, mar 25 2016

%t Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k])/(k + 1) Fibonacci[k + 1], {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 30}] (* or *)

%t CoefficientList[Series[(-x^2 + x + 1)/(-x^6 - 2 x^5 - 2 x + 1), {x, 0, 30}], x] (* _Michael De Vlieger_, Mar 25 2016 *)

%t LinearRecurrence[{2, 0, 0, 0, 2, 1}, {1, 3, 5, 10, 20, 42}, 100] (* _G. C. Greubel_, Mar 25 2016 *)

%o (Maxima)

%o a(n):=(n+2)/2*(sum(sum(binomial(k+1,n-2*k-i)*binomial(k+i,k),i,0,n-2*k)*fib(k+1)/(k+1),k,0,n/2));

%o (PARI) x='x+O('x^200); Vec((-x^2+x+1)/(-x^6-2*x^5-2*x+1)) \\ _Altug Alkan_, Mar 22 2016

%Y Cf. A000045, A113413.

%K nonn

%O 0,2

%A _Vladimir Kruchinin_, Mar 22 2016