OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 0, 0, 0, 2, 1).
FORMULA
G.f.: (-x^2+x+1)/(-x^6-2*x^5-2*x+1).
a(n) = 2*a(n-1) + 2*a(n-5) + a(n-6). - G. C. Greubel, mar 25 2016
MATHEMATICA
Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k])/(k + 1) Fibonacci[k + 1], {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 30}] (* or *)
CoefficientList[Series[(-x^2 + x + 1)/(-x^6 - 2 x^5 - 2 x + 1), {x, 0, 30}], x] (* Michael De Vlieger, Mar 25 2016 *)
LinearRecurrence[{2, 0, 0, 0, 2, 1}, {1, 3, 5, 10, 20, 42}, 100] (* G. C. Greubel, Mar 25 2016 *)
PROG
(Maxima)
a(n):=(n+2)/2*(sum(sum(binomial(k+1, n-2*k-i)*binomial(k+i, k), i, 0, n-2*k)*fib(k+1)/(k+1), k, 0, n/2));
(PARI) x='x+O('x^200); Vec((-x^2+x+1)/(-x^6-2*x^5-2*x+1)) \\ Altug Alkan, Mar 22 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 22 2016
STATUS
approved