login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270737
a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*F(k+1)/(k+1)), where F(k) is Fibonacci numbers.
0
1, 3, 5, 10, 20, 42, 91, 195, 415, 880, 1864, 3952, 8385, 17795, 37765, 80138, 170044, 360810, 765595, 1624515, 3447071, 7314368, 15520400, 32932800, 69880225, 148279107, 314634021, 667623210, 1416632420, 3005958090, 6378354619
OFFSET
0,2
FORMULA
G.f.: (-x^2+x+1)/(-x^6-2*x^5-2*x+1).
a(n) = 2*a(n-1) + 2*a(n-5) + a(n-6). - G. C. Greubel, mar 25 2016
MATHEMATICA
Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k])/(k + 1) Fibonacci[k + 1], {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 30}] (* or *)
CoefficientList[Series[(-x^2 + x + 1)/(-x^6 - 2 x^5 - 2 x + 1), {x, 0, 30}], x] (* Michael De Vlieger, Mar 25 2016 *)
LinearRecurrence[{2, 0, 0, 0, 2, 1}, {1, 3, 5, 10, 20, 42}, 100] (* G. C. Greubel, Mar 25 2016 *)
PROG
(Maxima)
a(n):=(n+2)/2*(sum(sum(binomial(k+1, n-2*k-i)*binomial(k+i, k), i, 0, n-2*k)*fib(k+1)/(k+1), k, 0, n/2));
(PARI) x='x+O('x^200); Vec((-x^2+x+1)/(-x^6-2*x^5-2*x+1)) \\ Altug Alkan, Mar 22 2016
CROSSREFS
Sequence in context: A158568 A068013 A342762 * A270724 A018104 A134365
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 22 2016
STATUS
approved