login
A270645
The sequence a of 1's and 2's starting with (2,1,1,1) such that a(n) is the length of the (n+2)nd run of a.
2
2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2
OFFSET
1,1
COMMENTS
See A270641 for a guide to related sequences.
LINKS
EXAMPLE
a(1) = 1, so the 3rd run has length 2, so a(5) must be 2 and a(6) = 2.
a(2) = 2, so the 4th run has length 1, so a(7) = 1 and a(8) = 2.
a(3) = 1, so the 5th run has length 1, so a(9) = 1 and a(10) = 2.
Globally, the runlength sequence is 1,3,2,1,1,1,2,2,1,2,1,2,2,1,1,..., and deleting the first 2 terms leaves the same sequence.
MATHEMATICA
a = {2, 1, 1, 1}; Do[a = Join[a, ConstantArray[If[Last[a] == 1, 2, 1], {a[[n]]}]], {n, 200}]; a (* Peter J. C. Moses, Apr 01 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 06 2016
STATUS
approved