

A270644


The sequence a of 1's and 2's starting with (1,2,2,2) such that a(n) is the length of the (n+2)nd run of a.


2



1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A270641 for a guide to related sequences.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000


EXAMPLE

a(1) = 1, so the 3th run has length 1, so a(5) must be 1 and a(6) = 2.
a(2) = 2, so the 4th run has length 2, so a(7) = 2 and a(8) = 1.
a(3) = 2, so the 5th run has length 2, so a(9) = 1and a(10) = 2.
Globally, the runlength sequence is 1,3,1,2,2,2,1,2,2,1,1,2,2,1,2,2,..., and deleting the first 2 terms leaves the same sequence.


MATHEMATICA

a = {1, 2, 2, 2}; Do[a = Join[a, ConstantArray[If[Last[a] == 1, 2, 1], {a[[n]]}]], {n, 200}]; a (* Peter J. C. Moses, Apr 01 2016 *)


CROSSREFS

Cf. A000002, A006928, A022300, A270641.
Sequence in context: A136690 A144703 A276825 * A097026 A189225 A169988
Adjacent sequences: A270641 A270642 A270643 * A270645 A270646 A270647


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Apr 06 2016


STATUS

approved



