login
A270491
a(n) = A256832(n) mod A003266(n).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 11138400, 2194264800, 970377408000, 194939999654400, 23386660116019200, 63018468582765696000, 81934202708323789824000, 118589068612624434080256000, 230237098382438262288036864000
OFFSET
1,10
EXAMPLE
a(5) = 0 because (1*2*5*12*29) mod (1*1*2*3*5) = 0.
MATHEMATICA
Table[Mod[Product[Expand[((1 + Sqrt@ 2)^j - (1 - Sqrt@ 2)^j)/(2 Sqrt@ 2)], {j, n}], Product[Fibonacci@ k, {k, n}]], {n, 18}] (* Michael De Vlieger, Mar 18 2016, after Vaclav Kotesovec at A256832 *)
PROG
(PARI) a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
a256832(n) = prod(k=1, n, a000129(k));
a003266(n) = prod(k=1, n, fibonacci(k));
for(n=1, 20, print1(a256832(n) % a003266(n), ", "));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 18 2016
STATUS
approved