|
|
A270104
|
|
Numbers n such that 3^n + n*2^n is prime.
|
|
1
|
|
|
1, 2, 7, 8, 13, 43, 55, 59, 145, 149, 545, 2468, 4049, 4055, 15653, 22765
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(17) > 30000. - Giovanni Resta, May 05 2016
|
|
LINKS
|
Table of n, a(n) for n=1..16.
|
|
EXAMPLE
|
n = 2 is a term since 3^2 + 2*2^2 = 17 is prime.
|
|
MATHEMATICA
|
Select[Range[1000], PrimeQ[3^# + # * 2^#]&] (* Giovanni Resta, May 05 2016 *)
|
|
PROG
|
(MATLAB)
if isprime(3^n + n*2^n)
disp(n)
end
(PARI) is(n)=ispseudoprime(3^n+n*2^n) \\ Charles R Greathouse IV, Jun 13 2017
|
|
CROSSREFS
|
Cf. A270102, A123924.
Sequence in context: A004717 A308918 A226819 * A063531 A063771 A064293
Adjacent sequences: A270101 A270102 A270103 * A270105 A270106 A270107
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Vardan Semerjyan, Mar 11 2016
|
|
EXTENSIONS
|
a(15)-a(16) from Giovanni Resta, May 05 2016
|
|
STATUS
|
approved
|
|
|
|