login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270058
T(n,k)=Number of nXk 0..4 arrays with some element plus some horizontally or vertically adjacent neighbor totalling four exactly once.
8
0, 5, 5, 40, 240, 40, 240, 5400, 5400, 240, 1280, 99840, 385200, 99840, 1280, 6400, 1683240, 22911300, 22911300, 1683240, 6400, 30720, 26891280, 1248460920, 4410058320, 1248460920, 26891280, 30720, 143360, 414705720, 64599504300
OFFSET
1,2
COMMENTS
Table starts
......0...........5...............40...................240
......5.........240.............5400.................99840
.....40........5400...........385200..............22911300
....240.......99840.........22911300............4410058320
...1280.....1683240.......1248460920..........779206497960
...6400....26891280......64599504300.......130850370606120
..30720...414705720....3230189811360.....21244602958557060
.143360..6237722400..157641639369300...3367363526042121600
.655360.92095515720.7554828673749960.524230216822482202860
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-1) -16*a(n-2)
k=2: a(n) = 26*a(n-1) -169*a(n-2) for n>3
k=3: a(n) = 90*a(n-1) -2257*a(n-2) +10440*a(n-3) -13456*a(n-4) for n>5
k=4: [order 6] for n>7
k=5: [order 14] for n>15
k=6: [order 26] for n>27
k=7: [order 64] for n>65
EXAMPLE
Some solutions for n=2 k=4
..4..3..1..0. .2..1..0..2. .3..3..4..3. .0..3..1..2. .0..3..4..3
..3..3..0..0. .1..4..0..1. .2..1..2..4. .1..0..1..0. .0..4..2..3
CROSSREFS
Column 1 is A269822.
Sequence in context: A271083 A271277 A269829 * A270156 A270164 A270181
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 09 2016
STATUS
approved