login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269924 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4. 13
225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

8,1

COMMENTS

Row n contains n-7 terms.

LINKS

Gheorghe Coserea, Rows n = 8..208, flattened

Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.

EXAMPLE

Triangle starts:

n\f  [1]           [2]           [3]           [4]

[8]  225225;

[9]  12317877,     12317877;

[10] 351683046,    792534015,    351683046;

[11] 7034538511,   26225260226,  26225260226,  7034538511;

[12] ...

MATHEMATICA

Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;

Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);

Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-Fran├žois Alcover, Aug 10 2018 *)

PROG

(PARI)

N = 14; G = 4; gmax(n) = min(n\2, G);

Q = matrix(N + 1, N + 1);

Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };

Qset(n, g, v) = { Q[n+1, g+1] = v };

Quadric({x=1}) = {

  Qset(0, 0, x);

  for (n = 1, length(Q)-1, for (g = 0, gmax(n),

    my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),

       t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),

       t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,

       (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));

    Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));

};

Quadric('x);

concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

CROSSREFS

Columns f=1-10 give: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.

Cf. A035309, A269921, A269922, A269923, A269925, A270406, A270407, A270408, A270409, A270410, A270412.

Row sums give A215402 (column 4 of A269919).

Sequence in context: A269116 A252394 A237848 * A288271 A215402 A204743

Adjacent sequences:  A269921 A269922 A269923 * A269925 A269926 A269927

KEYWORD

nonn,tabl

AUTHOR

Gheorghe Coserea, Mar 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 17:48 EDT 2022. Contains 354071 sequences. (Running on oeis4.)