login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270412
Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus g.
5
429, 26333, 795846, 291720, 16322085, 22764165, 259477218, 875029804, 205633428, 3435601554, 22620890127, 19678611645, 39599553708, 448035881592, 925572602058, 174437377400, 409230997461, 7302676928666, 29079129795702, 19925913354061
OFFSET
7,1
COMMENTS
Row n contains floor((n-5)/2) terms.
LINKS
Gheorghe Coserea, Rows n = 7..107, flattened
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
EXAMPLE
Triangle starts:
n\g [0] [1] [2] [3]
[7] 429;
[8] 26333;
[9] 795846, 291720;
[10] 16322085, 22764165;
[11] 259477218, 875029804, 205633428;
[12] 3435601554, 22620890127, 19678611645;
[13] 39599553708, 448035881592, 925572602058, 174437377400;
[14] 409230997461, 7302676928666, 29079129795702, 19925913354061;
[15] ...
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
T[n_, g_] := Q[n, 8, g];
Table[T[n, g], {n, 7, 14}, {g, 0, Quotient[n-5, 2]-1}] // Flatten (* Jean-François Alcover, Oct 18 2018 *)
PROG
(PARI)
N = 14; F = 8; gmax(n) = n\2;
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)));
concat(v)
CROSSREFS
Cf. A270411.
Sequence in context: A145056 A064304 A264180 * A258494 A258395 A215547
KEYWORD
nonn,tabf
AUTHOR
Gheorghe Coserea, Mar 17 2016
STATUS
approved