|
|
A269903
|
|
Integers n such that A002110(n) / 2 is the sum of 4 but no fewer nonzero squares.
|
|
1
|
|
|
3, 6, 7, 10, 14, 17, 20, 21, 26, 29, 30, 37, 40, 43, 44, 47, 50, 51, 58, 63, 67, 68, 72, 75, 82, 85, 90, 94, 97, 98, 102, 105, 106, 117, 120, 123, 125, 127, 129, 132, 139, 140, 143, 146, 150, 154, 164, 165, 167, 170, 173, 174, 178, 186, 190, 191, 193, 201, 205, 208, 209, 213, 220
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
3 is a term because 3*5 = x^2 + y^2 + z^2 where x, y, z are integers is not soluble.
6 is a term because 3*5*7*11*13 = x^2 + y^2 + z^2 where x, y, z are integers is not soluble.
4 is not a term because 3*5*7 = x^2 + y^2 + z^2 where x, y, z are integers is soluble, 105 = 1^2 + 2^2 + 10^2.
|
|
PROG
|
(PARI) isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri-7 ; if( j % 8==0, return(1) ) ; ); fouri *= 4 ; ) ; return(0) ; }
for(n=2, 1e3, if(isA004215(prod(k=2, n, prime(k))), print1(n, ", ")));
(Python)
from sympy import prime
for i in range(2, 10**6):
p = (p*prime(i)) % 8
if p == 7:
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|