|
|
A269839
|
|
Integers n such that the sum of the first n cubes (A000537) is the sum of 2 positive cubes.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
In other words, integers n such that (1+2+3+...+n)^2 = x^3 + y^3 where x and y are positive integers, is soluble.
|
|
LINKS
|
|
|
EXAMPLE
|
49 is a term because A000537(49) = 1^3 + 2^3 + ... + 48^3 + 49^3 = 1500625 = 70^3 + 105^3.
4557 is a term because A000537(4557) = 1^3 + 2^3 + ... + 4556^3 + 4557^3 = 107856595472409 = 11620^3 + 47369^3.
|
|
PROG
|
(PARI) isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
for(n=0, 1e7, if(isA003325((n*(n+1)/2)^2), print1(n, ", ")));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|