login
A269742
Triangle of generalized Eulerian numbers T(n,k) = <n,k>_2 read by rows, n >= 1, 0 <= k < 2*n.
7
1, 1, 1, 1, 1, 4, 11, 4, 1, 1, 11, 72, 114, 72, 11, 1, 1, 26, 367, 1492, 2438, 1492, 367, 26, 1, 1, 57, 1630, 13992, 48965, 73120, 48965, 13992, 1630, 57, 1, 1, 120, 6680, 109538, 727982, 2169674, 3107640, 2169674, 727982, 109538, 6680, 120, 1
OFFSET
1,6
COMMENTS
T(n,k) is the number of nonnegative integer n X n matrices with every row and column sum 2 and sum of entries below the main diagonal k. The case when every row and column sum is 1 is given by the Eulerian numbers (A008292). - Andrew Howroyd, Feb 22 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1600 (first 40 rows)
Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce, A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
Andrew Howroyd, PARI Program
EXAMPLE
Triangle begins:
1;
1, 1, 1;
1, 4, 11, 4, 1;
1, 11, 72, 114, 72, 11, 1;
1, 26, 367, 1492, 2438, 1492, 367, 26, 1;
1, 57, 1630, 13992, 48965, 73120, 48965, 13992, 1630, 57, 1;
...
The matrices for row n=3, k=0..2 are:
[2 0] [1 1] [0 2]
[0 2] [1 1] [2 0]
PROG
(PARI) \\ See link. - Andrew Howroyd, Feb 22 2020
CROSSREFS
Row sums are A000681.
Columns k=0..4 are A000012, A000295, A260585, A260575, A260582.
Central coefficients are A332729.
Sequence in context: A115643 A091387 A091388 * A151873 A354274 A205136
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Mar 16 2016
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Feb 22 2020
STATUS
approved