login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269707
Decimal expansion of x = 3*Sum_{n in E} 1/10^n where E is the set of numbers whose base-4 representation consists of only 0's and 1's.
4
3, 3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 3, 0
OFFSET
1,1
COMMENTS
E = {0, 1, 4, 5, 16, 17, 20, 21, 64, ...} (A000695).
Among the real numbers it is exceptional for the decimal expansion of a real number to determine the decimal expansion of its reciprocal. The purpose of this sequence is to show an example of such a number.
x is irrational. Proof: For all n >= 1, the numbers 3*4^n, 3*4^n + 1, 3*4^n + 2, ..., 3*4^n + 4^(n - 1) each contain at least one base-4 digit different from 0 or 1. So, the decimal expansion of x contains sequences of consecutive zeros with an arbitrary length. Moreover, the decimal expansion also contains an infinite number of digits 3, which implies that x is not periodic, so irrational.
We obtain the following property: 1/x = 3*Sum_{n in 2*E} 1/10^(n + 1) where 2*E = {0, 2, 8, 10, 32, 34, 40, 42, ...} (A062880).
REFERENCES
Daniel Duverney, Number Theory, World Scientific, 2010, 2.10 A striking number, pp. 19-20.
EXAMPLE
x = 3.3003300000000003300330000000000000000000000000000...
1/x = 0.303000003030000000000000000000003030000030300000...
MAPLE
Digits:=200:nn:=5000:s:=0:
for n from 0 to nn do:
x:=convert(n, base, 4):n0:=nops(x):
it:=0:ii:=0:
for k from 1 to n0 while(ii=0) do:
if x[k]=0 or x[k]=1
then
it:=it+1:
else
fi:
od:
if it=n0 then
s:= s+evalf(1/10^n):
else ii:=1:fi:
od:
print(3*s):
print(1/(3*s)):
MATHEMATICA
a[n_] := 3 * Boole[Max @ IntegerDigits[n-1, 4] <= 1]; Array[a, 100] (* Amiram Eldar, Aug 06 2021 *)
CROSSREFS
KEYWORD
nonn,base,cons
AUTHOR
Michel Lagneau, Mar 10 2016
EXTENSIONS
Edited by Rick L. Shepherd, May 31 2016
STATUS
approved