%I #8 Jan 26 2019 04:26:21
%S 4,16,60,224,820,2976,10700,38224,135780,480176,1691740,5941824,
%T 20814740,72755776,253836780,884207024,3075861700,10687549776,
%U 37098781820,128668433824,445930140660,1544500542176,5346546062860,18499277662224
%N Number of lengthn 0..3 arrays with no repeated value differing from the previous repeated value by other than plus or minus one modulo 3+1.
%H R. H. Hardin, <a href="/A269673/b269673.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n1)  a(n2)  15*a(n3).
%F Conjectures from _Colin Barker_, Jan 26 2019: (Start)
%F G.f.: 4*x*(1  x  4*x^2) / ((1  3*x)*(1  2*x  5*x^2)).
%F a(n) = (20*3^n + (187*sqrt(6))*(1sqrt(6))^n + (1+sqrt(6))^n*(18+7*sqrt(6))) / 15.
%F (End)
%e Some solutions for n=9:
%e ..3. .0. .2. .0. .2. .0. .1. .0. .1. .3. .2. .2. .1. .3. .0. .0
%e ..1. .3. .0. .1. .0. .1. .3. .1. .3. .0. .1. .1. .3. .1. .2. .0
%e ..0. .3. .1. .3. .0. .0. .0. .1. .2. .1. .3. .3. .0. .0. .1. .1
%e ..2. .0. .2. .3. .1. .3. .3. .0. .0. .2. .2. .1. .3. .1. .3. .3
%e ..3. .0. .2. .2. .3. .0. .2. .2. .0. .1. .2. .0. .0. .3. .3. .2
%e ..3. .1. .1. .1. .1. .0. .0. .0. .1. .0. .0. .0. .0. .3. .2. .0
%e ..0. .2. .0. .0. .0. .3. .3. .3. .1. .2. .2. .3. .3. .1. .1. .3
%e ..0. .3. .2. .1. .2. .3. .1. .1. .0. .2. .1. .2. .2. .0. .3. .3
%e ..3. .2. .3. .2. .1. .1. .1. .3. .1. .0. .2. .1. .1. .0. .2. .0
%Y Column 3 of A269678.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 03 2016
