OFFSET
1,1
COMMENTS
Difference between prime(n) and prime(n+1) is a multiple of 6, otherwise concatenation prime(n)//prime(n+1) is divisible by 3.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..59542
EXAMPLE
prime(46)=199, prime(47)=211 and both 199211 and 211199 are prime,
prime(51)=233, prime(51)=239 and both 233239 and 239233 are prime,
prime(9999972)=179424263, prime(9999973)=179424269 and both 179424263179424269 and 179424269179424263 are prime.
MATHEMATICA
PrimePi/@Select[Partition[Prime[Range[5000]], 2, 1], AllTrue[{FromDigits[ Join[ IntegerDigits[ #[[1]]], IntegerDigits[#[[2]]]]], FromDigits[ Join[ IntegerDigits[#[[2]]], IntegerDigits[#[[1]]]]]}, PrimeQ]&][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 14 2021 *)
PROG
(PARI) isok(n) = {my(sp = Str(prime(n))); my(sq = Str(prime(n+1))); isprime(eval(concat(sp, sq))) && isprime(eval(concat(sq, sp))); } \\ Michel Marcus, Mar 07 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Mar 07 2016
STATUS
approved