login
A269671
Integers n such that the concatenation of prime(n) and prime(n+1) and also concatenation of prime(n+1) and prime(n) are prime.
1
46, 51, 55, 71, 99, 119, 164, 298, 345, 461, 509, 523, 588, 668, 779, 827, 844, 848, 999, 1100, 1151, 1215, 1306, 1321, 1408, 1553, 1568, 1616, 1779, 1900, 1931, 1953, 2102, 2150, 2221, 2444, 2653, 2677, 3116, 3405, 3527, 3731, 3776, 3890, 3898, 3989, 4070, 4188, 4257, 4546, 4556, 4574, 4681, 4694, 4846, 4947, 4948, 4974
OFFSET
1,1
COMMENTS
Difference between prime(n) and prime(n+1) is a multiple of 6, otherwise concatenation prime(n)//prime(n+1) is divisible by 3.
EXAMPLE
prime(46)=199, prime(47)=211 and both 199211 and 211199 are prime,
prime(51)=233, prime(51)=239 and both 233239 and 239233 are prime,
prime(9999972)=179424263, prime(9999973)=179424269 and both 179424263179424269 and 179424269179424263 are prime.
MATHEMATICA
PrimePi/@Select[Partition[Prime[Range[5000]], 2, 1], AllTrue[{FromDigits[ Join[ IntegerDigits[ #[[1]]], IntegerDigits[#[[2]]]]], FromDigits[ Join[ IntegerDigits[#[[2]]], IntegerDigits[#[[1]]]]]}, PrimeQ]&][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 14 2021 *)
PROG
(PARI) isok(n) = {my(sp = Str(prime(n))); my(sq = Str(prime(n+1))); isprime(eval(concat(sp, sq))) && isprime(eval(concat(sq, sp))); } \\ Michel Marcus, Mar 07 2016
CROSSREFS
Sequence in context: A235687 A365009 A321046 * A039354 A043177 A043957
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Mar 07 2016
STATUS
approved