

A269542


Aliquot sequence starting at 702.


1



702, 978, 990, 1818, 2160, 5280, 12864, 21680, 28912, 31848, 47832, 71808, 148512, 359520, 946848, 1895712, 4539360, 12180336, 23781648, 44267568, 76111632, 139130668, 104348008, 92030552, 80526748, 62286692, 55099864, 51042536, 47249404, 35492780, 39042100
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This sequence is one of the first ones that contains numbers that exceed 2^64 and yet is known to terminate in a small prime followed by 1 and 0.
Note how all the numbers in the sequence are even, except the last 6 (not counting 0).


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, B6.
Enoch Haga, Exploring Prime Numbers on Your PC, 2nd ed., 1998, pages 8384 and Table 8, page 46. ISBN 1885794169.


LINKS

Daniel Mondot, Table of n, a(n) for n = 0..301


FORMULA

a(n+1) = A001065(a(n)).  R. J. Mathar, Oct 11 2017


PROG

(PARI) lista() = {print1(a=702, ", "); until (!a, a = sigma(a)  a; print1(a, ", "); ); } \\ Michel Marcus, Feb 29 2016


CROSSREFS

Cf. A001065, A008888.
Sequence in context: A252574 A252575 A252566 * A237632 A304155 A305508
Adjacent sequences: A269539 A269540 A269541 * A269543 A269544 A269545


KEYWORD

nonn,fini,full


AUTHOR

Daniel Mondot, Feb 29 2016


STATUS

approved



