Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jun 29 2022 10:27:49
%S 0,7,14,11,28,27,22,19,56,63,54,51,44,43,38,35,112,119,126,123,108,
%T 107,102,99,88,95,86,83,76,75,70,67,224,231,238,235,252,251,246,243,
%U 216,223,214,211,204,203,198,195,176,183,190,187,172,171,166,163,152,159,150,147,140,139,134,131,448,455,462,459
%N Formula for Wolfram's Rule 86 cellular automaton: a(n) = 4n XOR (2n OR n).
%C The sequence is injective: no value occurs more than once.
%C Fibbinary numbers (A003714) give all integers n>=0 for which a(n) = A048727(n) and for which a(n) = A269160(n).
%H Antti Karttunen, <a href="/A269161/b269161.txt">Table of n, a(n) for n = 0..16383</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rule30.html">Rule 30</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F a(n) = 4n XOR (2n OR n) = A003987(4*n, A003986(2*n, n)).
%F a(n) = 4*n XOR A163617(n).
%F Other identities. For all n >= 0:
%F a(2*n) = 2*a(n).
%F a(n) = A057889(A269160(A057889(n))). [Rule 86 is the mirror image of rule 30.]
%t a[n_] := BitXor[4n, BitOr[2n, n]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 23 2016 *)
%o (Scheme) (define (A269161 n) (A003987bi (* 4 n) (A003986bi (* 2 n) n))) ;; Where A003986bi and A003987bi are implementation of dyadic functions giving bitwise-OR (A003986) and bitwise-XOR (A003987) of their arguments.
%o (Python)
%o def A269161(n): return n<<2 ^ (n<<1 |n) # _Chai Wah Wu_, Jun 29 2022
%Y Cf. A003714, A003986, A003987, A057889, A163617.
%Y Cf. A265281 (iterates starting from 1).
%Y Cf. also A048727, A269160.
%K nonn
%O 0,2
%A _Antti Karttunen_, Feb 20 2016