login
A268893
Decimal expansion of the unique positive root of the equation Gamma(x) + Psi(x) = 0.
4
6, 3, 8, 8, 7, 8, 7, 4, 1, 1, 6, 0, 1, 9, 8, 3, 2, 2, 9, 9, 5, 2, 7, 6, 2, 4, 7, 2, 4, 7, 5, 4, 0, 6, 1, 5, 0, 9, 6, 9, 4, 2, 7, 2, 2, 3, 8, 4, 4, 4, 3, 5, 5, 4, 2, 3, 4, 9, 3, 1, 2, 6, 3, 2, 5, 3, 7, 1, 8, 0, 8, 4, 7, 8, 4, 8, 1, 0, 2, 2, 3, 0, 5, 0, 9, 5, 5, 7, 6, 3, 0, 9, 2, 9, 9, 4, 3, 0, 6, 1, 3, 6, 8, 8, 7, 8
OFFSET
0,1
COMMENTS
Gamma(x) stands for the gamma function (Euler's integral of the second kind), Psi(x) denotes the digamma function (logarithmic derivative of the gamma function).
EXAMPLE
0.6388787411601983229952762472475406150969427223844435...
MAPLE
Digits:= 150; fsolve(GAMMA(x)+Psi(x)=0, x);
MATHEMATICA
FindRoot[Gamma[x]+PolyGamma[x]==0, {x, 0.6}, WorkingPrecision->120][[1, 2]] // RealDigits[#, 10, 106]& // First
PROG
(PARI) default(realprecision, 120); solve(x = 0.60, 0.68, gamma(x)+psi(x))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved