login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268753
Primes congruent to 1 mod 13.
4
53, 79, 131, 157, 313, 443, 521, 547, 599, 677, 859, 911, 937, 1093, 1171, 1223, 1249, 1301, 1327, 1483, 1613, 1847, 1873, 1951, 2003, 2029, 2081, 2237, 2341, 2393, 2549, 2731, 2861, 2887, 2939, 3121, 3251, 3329, 3407, 3433, 3511, 3719, 3797, 3823, 4057, 4421, 4447, 4603, 4733, 4759, 4889, 4967, 4993, 5227, 5279
OFFSET
1,1
COMMENTS
The first 45 terms, up to 4057, coincide with A059245. Then a(46)=4421 occurs in this sequence, while A059245(46)=4447.
LINKS
FORMULA
a(n) ~ 12n log n. - Charles R Greathouse IV, Mar 11 2020
EXAMPLE
53 is the first prime of the form 13k + 1, therefore a(1)=53.
MATHEMATICA
Select[Prime@ Range@ 700, Mod[#, 13] == 1 &] (* Michael De Vlieger, Feb 12 2016 *)
PROG
(PARI) forprime(p=2, 1e4, if(p%13==1, print1(p", ")))
(PARI) forprimestep(p=53, 1e4, 26, print1(p", ")) \\ Charles R Greathouse IV, Mar 11 2020
(Magma) [p: p in PrimesUpTo(5300) | p mod 13 in {1} ]; // Vincenzo Librandi, Feb 13 2016
CROSSREFS
Cf. A059245 (x^13 = 2 has no solution mod prime p).
Sequence in context: A129257 A125875 A059245 * A125876 A136065 A354915
KEYWORD
nonn,easy
AUTHOR
Alexei Kourbatov, Feb 12 2016
STATUS
approved