login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268691
Number of n-digit binary strings such that for all 2 <= k <= n, the string formed by the first k digits of the original string is composed of at least one-quarter 1's and one-quarter 0's.
1
1, 2, 2, 4, 8, 12, 24, 48, 96, 180, 360, 720, 1440, 2820, 5640, 11280, 22560, 44760, 89520, 179040, 358080, 713760, 1427520, 2855040, 5710080, 11403060, 22806120, 45612240, 91224480, 182321460, 364642920, 729285840, 1458571680, 2916160800, 5832321600
OFFSET
0,2
LINKS
Alois P. Heinz and Charles R Greathouse IV, Table of n, a(n) for n = 0..3323 (0-1000 from Heinz)
FORMULA
For all n > 2 not equivalent to 1 mod 4, a(n) = 2a(n-1).
EXAMPLE
For n=2, the strings are 01 and 10. For n=3, they are 010, 011, 100, 101.
MAPLE
b:= proc(n, i, j) option remember; `if`(n=0, 1, (t->
`if`(t>=2 and 4*j<t, 0, b(n-1, sort([j, i+1])[]))+
`if`(t>=2 and 4*i<t, 0, b(n-1, sort([i, j+1])[])))(i+j+1))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 11 2016
MATHEMATICA
b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Function[t,
If[t >= 2 && 4j < t, 0, b[n-1, Sequence @@ Sort[{j, i+1}]]]+
If[t >= 2 && 4i < t, 0, b[n-1, Sequence @@ Sort[{i, j+1}]]]][i+j+1]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 50] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
PROG
(PARI) a(n)=if(n<2, return(n+1)); my(u, v=vector((3*n+1)\4), mx, mn); v[1]=2; for(i=3, n, mn=(i+3)\4; mx=i-mn; u=vector(#v, j, if(j<mn||j>mx, 0, if(j>1, v[j-1])+v[j])); v=u); vecsum(v) \\ Charles R Greathouse IV, Feb 11 2016
(PARI) first(n)=if(n<2, return(n+1)); my(u, v=vector((3*n+1)\4), w=vector(n+1), mx, mn); w[1]=1; w[2]=w[3]=v[1]=2; for(i=3, n, mn=(i+3)\4; mx=i-mn; u=vector(#v, j, if(j<mn||j>mx, 0, if(j>1, v[j-1])+v[j])); w[i+1]=vecsum(v=u)); w \\ Charles R Greathouse IV, Feb 11 2016
CROSSREFS
Sequence in context: A244781 A052907 A048114 * A102456 A032067 A337361
KEYWORD
nonn
AUTHOR
Josh Speckman, Feb 11 2016
EXTENSIONS
More terms from Alois P. Heinz, Feb 11 2016
STATUS
approved