

A268368


An eventually quasiquadratic sequence satisfying a Hofstadterlike recurrence.


7



0, 1, 0, 4, 4, 4, 3, 12, 8, 4, 3, 24, 12, 4, 3, 40, 16, 4, 3, 60, 20, 4, 3, 84, 24, 4, 3, 112, 28, 4, 3, 144, 32, 4, 3, 180, 36, 4, 3, 220, 40, 4, 3, 264, 44, 4, 3, 312, 48, 4, 3, 364, 52, 4, 3, 420, 56, 4, 3, 480, 60, 4, 3, 544, 64, 4, 3, 612, 68, 4, 3, 684
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

a(n) is the solution to the recurrence relation a(n) = a(na(n1)) + a(na(n2)) + a(na(n3)), with the initial conditions: a(n) = 0 if n <= 0; a(1) = 0, a(2) = 1, a(3) = 0, a(4) = 4, a(5) = 4, a(6) = 4, a(7) = 3.


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,3,0,0,0,1).


FORMULA

a(2) = 1, a(3) = 0; otherwise a(4n) = 2n^2+2n, a(4n+1) = 4n, a(4n+2) = 4, a(4n+3) = 3.
From Colin Barker, Jun 22 2017: (Start)
G.f.: x^2*(1 + 4*x^2 + 4*x^3 + x^4 + 3*x^5  4*x^7  5*x^8  6*x^9 + 3*x^12 + 3*x^13) / ((1  x)^3*(1 + x)^3*(1 + x^2)^3).
a(n) = 3*a(n4)  3*a(n8) + a(n12) for n>12.
(End)


PROG

(PARI) concat(0, Vec(x^2*(1 + 4*x^2 + 4*x^3 + x^4 + 3*x^5  4*x^7  5*x^8  6*x^9 + 3*x^12 + 3*x^13) / ((1  x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^100))) \\ Colin Barker, Jun 22 2017


CROSSREFS

Cf. A005185, A188670, A244477, A264757, A267501.
Sequence in context: A073259 A174987 A214926 * A274947 A279406 A171408
Adjacent sequences: A268365 A268366 A268367 * A268369 A268370 A268371


KEYWORD

nonn,easy


AUTHOR

Nathan Fox, Feb 23 2016


STATUS

approved



