%I #18 Dec 03 2016 12:12:24
%S 1031223314,21322314,21322314,21322314,21322314,3122331415,3122331416,
%T 3122331417,3122331418,3122331419,1031223314,21322314,21322314,
%U 21322314,21322314,3122331415,3122331416,3122331417,3122331418,3122331419,10311233,21322314,22,21322314,31123314,31123315
%N First number of the periodic part of the "Say what you see" trajectory (see A005151) of n.
%C a(40) is the first time the periodic part of the trajectory contains more than one term.
%H Julien Kluge, <a href="/A268312/b268312.txt">Table of n, a(n) for n = 0..10000</a>
%e Consider the starting value n = 5. We see one five: 15. We have one ones and one 5: 1115. We have three ones and one five: 3115... We reach 3122331415 which produces itself. So a(5) = 3122331415.
%t a005151[n_, m_] :=
%t FromDigits[
%t Reverse /@
%t Sort[Tally[
%t If[n == 2, m, a005151[n - 1, m]] //
%t IntegerDigits], #1[[1]] < #2[[1]] &] // Flatten];
%t a[n_] := Block[{previousNum = 0, currentNum = 1, knownNums = {n}},
%t For[i = 2, currentNum != previousNum, ++i,
%t previousNum = currentNum;
%t currentNum = a005151[i, n];
%t If[MemberQ[knownNums, currentNum], Return[currentNum],
%t AppendTo[knownNums, currentNum]];
%t ];
%t Return[currentNum];
%t ]
%t a /@ Range[0, 100]
%Y A005151 shows a[1] at term number 13.
%Y Cf. A047841.
%K nonn,easy,base
%O 0,1
%A _Julien Kluge_, Jan 31 2016