login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267816
Decimal representation of the n-th iteration of the "Rule 221" elementary cellular automaton starting with a single ON (black) cell.
3
1, 3, 23, 111, 479, 1983, 8063, 32511, 130559, 523263, 2095103, 8384511, 33546239, 134201343, 536838143, 2147418111, 8589803519, 34359476223, 137438429183, 549754765311, 2199021158399, 8796088827903, 35184363700223, 140737471578111, 562949919866879
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 22 2016 and Apr 16 2019: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
G.f.: (1-4*x+16*x^2-16*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
a(n) = 2^(n + 1) * (2^n - 1) - 1, for n > 0. - Jaroslav Krizek, Jan 22 2017
MATHEMATICA
rule=221; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Cf. A267814.
Similar entries: A085601 (2^(n + 1) * (2^n + 1) + 1), A092431 (2^(n - 1) * (2^n + 1) - 1), A092440 (2^(n + 1) * (2^n - 1) + 1), A129868 (2^(n - 1) * (2^n - 1) - 1), A134169 (2^(n - 1) * (2^n - 1) + 1), A281481 (2^(n - 1) * (2^n + 1) + 1), A281482 (2^(n + 1) * (2^n + 1) - 1). - Jaroslav Krizek, Jan 22 2017
Sequence in context: A196970 A197557 A225671 * A269235 A245752 A290367
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 20 2016
STATUS
approved