login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267735
T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row and column greater than or equal to the previous repeated value.
8
2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 28, 225, 512, 225, 28, 51, 784, 3375, 3375, 784, 51, 92, 2601, 21952, 39330, 21952, 2601, 92, 164, 8464, 132651, 451278, 451278, 132651, 8464, 164, 290, 26896, 778688, 4705642, 9116396, 4705642, 778688, 26896, 290, 509
OFFSET
1,1
COMMENTS
Table starts
...2......4.........8..........15.............28...............51
...4.....16........64.........225............784.............2601
...8.....64.......512........3375..........21952...........132651
..15....225......3375.......39330.........451278..........4705642
..28....784.....21952......451278........9116396........163879101
..51...2601....132651.....4705642......163879101.......4977655636
..92...8464....778688....47293550.....2818160392.....143643342651
.164..26896...4410944...453985015....45839624169....3885150758271
.290..84100..24389000..4225323881...718310821738..100631663710208
.509.259081.131872229.38217977443.10874476927778.2504347486850059
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: [order 9]
k=3: [order 16]
k=4: [order 42]
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1....1..1..1..0....0..0..1..0....0..1..1..1....0..0..1..1
..1..0..0..0....0..0..1..1....1..0..1..0....0..0..1..1....0..1..0..0
..1..0..0..1....0..1..1..0....0..0..0..0....1..1..1..1....0..1..0..0
..0..0..1..1....1..1..1..0....0..0..1..1....0..0..1..0....1..1..1..0
CROSSREFS
Column 1 is A029907(n+1).
Sequence in context: A189196 A188747 A204981 * A189905 A189161 A189343
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 20 2016
STATUS
approved